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SUMMARY: A particular case of steady state and axial symmetry -the potential
formula proposed by Miyamoto and Nagai - is studied. A number of orbits of a
bound test particle is determined numerically, with both, the potential parameters
and initial conditions, varied. Unlike special cases, such as nearly circular and
nearly planar orbits, in the case of ”truly spatial orbits” the time dependence of the
coordinates becomes very complicated and a mathematical treatment including any
known periodic functions is hardly possible. Bearing in mind that orbits studied in
the present paper are determined by three elements, the authors propose the mean
values over time of the squares of velocity components to characterize them.
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1. INTRODUCTION

The question concerning the integrals of mo-
tion in the case of large or statistical stellar systems,
like star clusters and galaxies, is among the funda-
mental ones in stellar dynamics. A study of such
systems involves almost always the assumption of a
steady state. As a consequence, for an arbitrary test
particle (star) orbiting the system center the total
mechanical energy will be constant, the fact known
as the energy integral. In addition, the steady state,
as an ideal state in time, is usually accompanied by
a kind of symmetry, an ideal state in space. The two
best known kinds of symmetry are the spherical and
the axial ones. As is well known, in the former case
the consequence is the conservation of the angular-
momentum vector, whereas in the latter one only one
component of this vector (that along the symmetry
axis) is conserved. Indeed, this may be applied to
real stellar systems as a first approximation: globu-
lar clusters and subsystems of galaxies, except discs,
are examples for steady state and spherical symme-
try, whereas the discs are examples for steady state
and axial symmetry.

From the theoretical point of view the steady
state has another important consequence - the total
number of independent integrals of motion describing
the motion of a test particle is five, not six. How-
ever, as easily seen, the mere validity of the two con-
servation laws (energy and angular momentum) in
both variants (spherical and axial symmetries) does
not yield five independent integrals of motion. It
is usually said that the additional integrals of mo-
tion are generally non-isolating, unlike the energy
and angular-momentum components, which are iso-
lating.

In order to throw more light on the nature of
generally non-isolating integrals, we have undertaken
a study intended to result in a series of papers. In
the first paper of this series (Ninkovi¢ and Jovanovié
2008), a particular case of steady state and spher-
ical symmetry was considered where the attention
was paid to the ratio of the sidereal period to the
anomalistic one. The results clearly indicated a dif-
ferent nature of the fifth independent isolating inte-
gral of motion for that case (steady state and spher-
ical symmetry), when it exists, appearing rather as
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a consequence of a resonance than following from a
fundamental conservation law, like those concerning
energy and angular momentum.

In the present paper the authors examine the
more general case of steady state and axial sym-
metry. This case is rather well known in the lit-
erature (e.g. Binney and Tremaine 1987 - p. 114,
Contopoulos 2002 - p. 434). Though from the
point of view of the theory it is not yet clear if
for this case in general there is another isolating in-
tegral of motion, independent of the two classical
ones (energy and one component of angular momen-
tum), it has attracted much attention. In particular,
some formulae describing the gravitational potential
within a stellar system and corresponding to the case
of steady state and axial symmetry have been de-
rived; well-known examples are the Hénon-Heiles for-
mula (Hénon and Heiles 1964), the Kuzmin formula
(Kuzmin 1956), the Miyamoto-Nagai (1975) formula,
the so-called logarithmic potential (Richstone 1980),
etc. It should be said that the Kuzmin formula cor-
responds to one of the pairs surface density-square
of circular velocity (n = 1) found by Toomre (1963).

Any analytical presentation of the potential
is very important. Not only because of the cases
allowing an analytical solution of the equations of
motion, but also for those where the only possibility
is to look after a numerical solution. Today many
algorithms for solving the equations of motion are
available. The procedure is rather standardized; one
applies the angular-momentum integral in order to
reduce the problem to solving two equations only: in
R (distance to the axis of symmetry) and in z (its
modulus is the distance to the plane of symmetry).
The energy integral is used as the means of control-
ling the accuracy of the numerical procedure.

As an example of such an approach, one can
mention a paper by Ninkovié¢ et al. (2002). In that
paper orbits around the center of the Milky Way are
calculated for a number of sets of initial conditions.
The Milky Way was assumed to be in steady state
with axial symmetry. Its potential was given analyt-
ically, combining terms of axial symmetry and the
spherical one (special case of axial symmetry), which
represented different subsystems of the Galaxy. The
orbits obtained there were presented in projection
onto the meridional plane and the shapes of these
projections were studied. However, due to the con-
straints imposed on the distribution of dark matter,
the same potential formulae cannot be applied be-
yond the limiting sphere of dark matter. For this
reason the opinion of the present authors is that a
better approach is to assume a one-component po-
tential described by a single formula. The potential
formula chosen here is that of Miyamoto and Nagai
(1975).
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2. DESCRIPTION OF THE POTENTIAL
FORMULA CHOSEN HERE

The formula proposed by Miyamoto and Na-
gai (1975) which describes the gravitational potential
within a stellar system (or subsystem) is

- GM
VR + (a+ VTR

(1)

The designations mean: II potential, G uni-
versal constant of gravitation, M total mass of the
system, R distance to the main axis (axis of symme-
try), z the coordinate along this axis, whereas a and b
are two constants which have dimension of distance.
Thus it is seen from formula (1) that the potential
of a stellar system in this case has three indepen-
dent parameters (three constants, M, a and b, not
universal).

Potential (1) originates (Poisson’s equation)
from a mass distribution given by

_ M [aR? + (a+3V22 +b%)(a + V22 + b2)?]

A [R? 4 (a + V22 + 172)2]5/2 (22 + b2)3/2

(2)
where p is the density. As easily seen from this ex-
pression, sufficiently close to the center (R =0,z =
0) the density is almost constant. The volume,
within which this mass distribution applies, is infi-
nite; formula (1) shows that at very large both R and
|z| the potential becomes similar to that of a point
mass. The behavior of the two constants having di-
mension of distance, a and b, determines the two
limiting cases. If we have a = 0, then this density-
potential pair (formulae (2) and (1)) becomes the
case known as the Plummer or the Schuster one,
in which the axial symmetry is reduced to its spe-
cial case — the spherical one. On the other hand, if
b = 0, the pair becomes Kuzmin’s case (or Kuzmin-
Toomre case) for which the system has a collapse so
that the density dependence on z follows the Dirac
delta function. Therefore, by varying the ratio a/b
one varies the flattening of the system: from zero (no
flattening) towards infinity (collapse into the plane
of symmetry). As for these two extremes, the case
corresponding to the spherical symmetry might be
of interest. It is true that in both extremal cases the
orbit of a test particle always remains in the same
plane, but for the spherical symmetry the inclina-
tions can have all possible values resulting in dif-
ferent pictures when projected onto the meridional
plane (R, z plane). However, in the case of collapse
all stars orbit the center in the same plane because,
clearly, the system is self-consistent.
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3. ORBITS

The orbit of a test particle is calculated by us-
ing the two well-known Lagrange equations: in the
coordinates R and z. In the first one, we use the in-
tegral of angular momentum J, (J, = R20, 0 is the
position angle in plane z = 0). In the case of po-
tential (1) the two differential equations cannot be
solved analytically. For this reason we apply numer-
ical integrations based on the Runge-Kutta method.
In our procedure the second-order differential equa-
tions are reduced to twice as many first-order equa-
tions. As the accuracy control of the algorithm we
use the energy integral. The total energy of the test
particle per unit mass (specific energy) is calculated
at every step; this is the difference between the spe-
cific kinetic energy and the potential expressed in
km 2 s ~2. The procedure used here enabled us to
achieve required levels of accuracy and precision: ac-
curacy goal 1079, and working precision 107!, (The
precision defines the number of significant digits in
the calculations. The accuracy concerns the number
of reliable digits in the result.)

Though the values of the model parameters
are not significant, we choose them in a way that
our model (potential (1)) resembles a real galaxy or,
more precisely, a subsystem of a real galaxy. The
total mass (M) had always the same value, namely
95 x10° solar masses, whereas for the two parame-
ters having the dimension of distance, a and b, the
values were varied, but their sum was kept constant
- 4.73 kpc. According to the condition mentioned
in the previous Section, the parameter ¢ may attain
zero, which is its minimum value. In the case of the
other parameter, the minimum is arbitrarily taken to
be 0.47 kpc. All these values, including that for the
mass, have their origin in the parameter values for
the Milky Way model proposed by one of the present
authors (Ninkovi¢ 1992). More particularly, they are
referred to the disc component in that model. We
can say that in this paper the galactic disc, as it was
described in Ninkovié’s (1992) paper, represents one
of the two limits, where the other one is a sphere of
the same total mass.

In these circumstances a variety of initial con-
ditions were specified. Every set of them yielded a
new orbit. First orbits we were interested in are those
characterized by the same values for the specific en-
ergy and specific angular momentum. For conve-
nience, we examined them for the case of the same
initial position or, more precisely, the same poten-
tial at the beginning of the orbit calculation. The
fact that two different sets of initial conditions corre-
sponding to the same values for the two classical inte-
grals of motion (energy and angular momentum) re-
sult in two different orbits (say Binney and Tremaine
1987 p. 117) is well known. Tt is usual to call the sum

of the potential and of the quantity —% ‘;{Z; effective

potential (say, Binney and Tremaine 1987 - p. 115),
but, perhaps, it might be better to use the term effec-
tive (specific) kinetic energy for the sum %(R2 +22).
The reason is that then, for the conditions specified
above, we study orbits with the same initial effective

kinetic energy, but with different fractions of the two
components (radial 3 R* and vertical $2%).

As for the initial position of the test particle,
for convenience, our choice is a point in the main
plane, not too close to the center (due to axial sym-
metry the position angle in the plane has no influ-
ence). The value of its R coordinate is 8.5 kpc. This
value is exactly equal to the distance of the Sun to
the rotation axis of the Milky Way recommended by
the TAU. The coincidence is not accidental, but with
regard to the values of the model parameters (a and
b) the initial position chosen in such a way is suf-
ficiently far from the center. In this situation one
can clearly distinguish three essential kinds of or-
bits. Those characterized by a value for the modulus
of the specific angular momentum close to the prod-
uct Ru.(R), where u.(R) is the circular speed, and
by low values of moduli of the other two velocity
components will be nearly circular; the test parti-
cle will be always close to a circle R = R,,, =const
in the main plane. Such orbits are well described
by the Lindblad formalism and they are usually re-
ferred to as epicyclic orbits (e.g. Contopoulos 2002 -
p. 381). In this case the motions in the main plane
with respect to the circle and along the z axis are
sufficiently well represented as harmonic oscillations
with constant amplitudes. The other two cases are
not so simple. For this reason we calculate the de-
pendence on time for all the six phase coordinates:
R, 6, z, R, 6 (or © = Rf), % (cylindrical frame).

If the orbital eccentricity in the main plane,
more precisely the interval in the R coordinate, is
not too low, the motion becomes more complicated.
This is shown in our calculation; the motion in R
can be no longer represented as simple harmonic os-
cillations, but the extrema are clearly seen. On the
other hand, in the case of the z coordinate not only
that we have no simple harmonic oscillations, but the
amplitude becomes variable, dependent on R. How-
ever, such a situation can be expected only as long
as the test particle remains sufficiently close to the
main plane. Orbits of that kind may be referred to
as nearly planar orbits.

Finally, one has the most general case when
the motion of a test particle is not limited either to
the proximity of a circle in the main plane, or to
that of the plane itself. Orbits of such kind are ”true
spatial orbits”. In this case, the time dependence be-
comes very complicated and, unlike the earlier cases,
we cannot find a good fit based on elementary func-
tions in either of the two coordinates (R and z). This
circumstance seems to be closely connected to the
question of a third independent isolating integral of
motion. In the case of the epicyclic orbits, as it is
well known, the planar and vertical (along z) mo-
tions are approximately separated and three orbital
elements are easily recognizable. They can be as-
cribed to the integral of angular momentum and to
the splitting of the energy integral in two parts (pla-
nar and vertical). A similar situation takes place in
the case of nearly planar orbits. The motion in the
main plane is well characterized by two orbital ele-
ments, say the extremal values of R; in other words,
it seems that there is a separate energy integral for
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the planar motion which combined with that of an-
gular momentum yields two extremal values of R. As
for the z coordinate, it can be characterized by one
orbital element, its "own energy integral”, but, as
already said, the amplitude is dependent on R and
the nature is not as simple as in the case of epicyclic
orbits.

However, when the true spatial orbits are in
question, quasi-integrals (or approximate integrals)
cannot be so easily connected to the energy integral.
For instance, if the test particle reaches the same pair
of circles R =const, |z|=const several times, then the
effective kinetic energy must always be the same, so
the behavior of the components is of interest. On
the basis of the integrals of energy and angular mo-
mentum we can expect each time different values of
the components of the effective kinetic energy. How-
ever, this is not what we obtain. The values of the
components of the effective kinetic energy on these
pairs of circles are not constant. If this were the case
we could easily relate each component of the effective
kinetic energy to a function of the coordinates R and
|z| which resembles splitting of energy integral in two
different parts. Some values of the components of ef-
fective kinetic energy are repeated at the moments
of reaching such a pair of circles. Therefore, the sit-
uation as found here is something between the two
extremal possibilities: always the same values of the
components of effective kinetic energy and each time
different values. In other words, we find no splitting
of the energy integral, but also we do not have a
chaotic situation (each time different values) which
would be against the existence of any additional in-
tegral. In any case, all sets of initial conditions char-
acterized by the same initial position and the same
values for the energy and angular-momentum inte-
grals result in different orbits which can be distin-
guished through the initial fraction in the effective
kinetic energy of either of its components. It is clear
that to define a single orbit one needs three elements.

It should be emphasized that an epicyclic or-
bit as the result of interchanging the values of the
two components of the effective kinetic energy can
hardly become a nearly planar one. The reason is
that the condition of smallness for the effective ki-
netic energy is so strong that by varying the com-
ponents within the same value of this quantity one
always obtains harmonic oscillations in both R and z,
but with different amplitudes. However, in the case
of a nearly planar orbit the condition of smallness for
the effective kinetic energy is not so strong. One only
needs that the modulus of the z component is low.
Therefore, when this component becomes dominant,
then a nearly planar orbit can be transformed into a
”true spatial orbit”. Once again, this consideration
concerns orbits characterized by the same values of
energy and angular momentum and the same initial
position. The only difference is in the fraction of ei-
ther component in the total effective kinetic energy.

In order to examine the behavior of the ob-
tained orbits in more detail we derive the dependence
on time of the coordinates. We obtain an excellent
analytical approximation with just a few harmonics
(Figs. 1-3). Orbits which look like those in Fig. 3
are known as box orbits, as proposed by Contopou-
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los. Unfortunately, this is not the case with "true
spatial orbits”.

The conclusion concerning the necessary num-
ber of elements for defining a single orbit in the case
of steady state and axial symmetry is rather well
known (e.g. Hénon and Heiles 1964). Therefore, we
try here to propose some quantities which character-
ize an orbit and can be used as some kinds of integrals
of motion. In particular, we calculate for each or-
bit the mean values over time for the components of
the effective kinetic energy. The time interval is that
within which an orbit is integrated. The mean values
are organized as components of a symmetric tensor:

(R?)¢, (R%); and (2?);. In this case the two mean
squares are of interest because the mixed mean value
is practically zero. The mean squares are in general
mutually different and if several orbits with the same
total energy and angular momentum are compared,
their ratios are also different. The mean squares of
velocity components taken over time are generally
different, 1.e. this property does not concern epicyclic
orbits and nearly planar planar ones where the time
dependence can be represented analytically by apply-
ing trigonometric functions. Therefore, independent
harmonic oscillations in each degree of freedom (R
and z) cannot explain what we obtain here. This is
seen from Figs. 4-6 in which a truly spatial orbit is
presented. As noted in the captions to these figures,
the time dependence of both R and z becomes very
complicate compared to the analogous cases in Figs.
1-2. For this reason we_cannot obtain a conservation
of energy ”per axis” 22 + 2, where x is any of the
coordinates. Again, any clear dependence of a veloc-
ity square on the coordinates would lead to a fixed
value of the given velocity square always when the
test particle passes through a given circle R =const,
|z| =const. However, in the cases of truly spatial
orbits, like the one presented in Figs. 4-6, neither of
the two velocity squares has always the same value
when the test particle is on a given circle, but the
situation with the velocity squares is not completely
chaotic, either. Due to this, the mean values of the
velocity squares (radial and vertical) for a given cir-
cle, i.e. involving all passages of the test particle are,
in general, different. As a consequence, the mean val-
ues of the two velocity squares taken over the whole
time interval covered by the integration are also, in
general, different.

If we used the mean velocity squares over time
as quasi-integrals of motion and applied the Jeans
theorem to them, we would obtain different velocity
dispersions in the R and z directions, for example for
the position used here as the initial one. Of course,
the same line of reasoning would be valid for any
other position. It should be commented here that,
namely, the well-known Schwarzschild triaxial dis-
tribution of random velocities at the galactocentric
position of the Sun served as the first indication that
the energy and angular-momentum integrals are not
enough to explain this result of the stellar kinematics
in the solar neighborhood. As it is well known, a lot
of solutions have been proposed (e.g. Contopoulos
2002 - p. 435). Our attempt to explain the triaxility
of the distribution of random velocities is similar to
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Fig. 1. Dependence of distance R to z awis on time (time unit = 108 yr) for an orbit defined by: a = 2.26
kpe b = 2.47 kpc (model parameters) and R = 8.5 kpc, z = 0 kpc, R =10 kms™t, 2 =5 kms 1, © = 200
kms~1 (initial conditions). This dependence is fitted by R(t) = 10.0631 + 1.48934 cos(2.22697t — 2.916945) +
0.112048 cos(4.45392t—2,69157)+0.01256 cos(6.68092¢t—2.46872)+0.00166 cos(8.90804¢t—2.25064)+0.00024 x
cos(11.1360t — 2.08511) + 0.00008 cos(4.77324¢ + 135152) + ...
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Fig. 2. Dependence of z coordinate on time (time unit = 108 yr), model parameters and initial conditions
as in Fig. 1. This dependence is fitted by z(t) = 0.18275 cos(2.46497t — 1.64078) + 0.03412 cos(0.23797t +
1.27748)40.01277 cos(4.69191t—1.41489)40.00127 cos(6.91892t—1.19329)+0.00049 cos(2.00564t —1.88559) +
0.00015 cos(9.14486t — 0.89823) + . ..

33



S. NINKOVIC and B. JOVANOVIC

100

SRS S SISO
QKKK RN

VA S @/ |
\/‘\\.\/\0,(,‘\,?

9%

80

IR AR
WA XD

OSSN
M0
OOCE00
NSO
OQOCK \/o/\“@\,.\‘\

60

———

e
ey
OO0
(ORI A
NS
=00 SO
s IR

AR AAM,
MR RIM
WX IO KX N

G

o\‘/v \\ﬂ\
/ I
. , XD \./‘V.A‘/- & ‘.,.
IS > I IE ST SO

35
30}
25
20

\/

SAANN

Fig. 3. Dependence z(R) for the same model parameters and initial conditions as in Figs. 1-2.
40

0 kpe, R = 15 kms™1, 2 = 391.2

kms=1, © = 20 kms~! (initial conditions). This dependence cannot be approzimated by a sum of harmonics

as accurately as in the previous case (Fig. 1).

Dependence of distance R to z awis on time (time unit = 10% yr) for an orbit determined by:
= 0.47 kpc (model parameters) and R = 0.2 kpe, z

a = 4.26 kpc b

Fig. 4.
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Fig. 5. Dependence of z coordinate on time (time unit = 108 yr), model parameters and initial conditions
as in Fig. 4. Although some kind of reqularity is evident, the harmonic representation of this dependence is
significantly less accurate than the one shown in Fig. 2.
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Fig. 6. Dependence z(R) for the same model parameters and initial conditions as in Figs. 4-5.
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that of Barbanis who proposed an additional inte-
gral, a function of 22 (Contopoulos 2002, p. 436).

It is also important to examine the problem
with another initial position, 1.e. different initial val-
ues of the coordinates for which the initial values of
the velocity components are varied. The positions
in the main plane are preferred for clear reasons.
Due to the properties of the potential formula (1)
assumed here, any choice where the distance to the
axis of symmetry is shifted outwards, will bring noth-
ing new. The most interesting case is if a position
sufficiently near the center is chosen. Then, since
the density corresponding to potential (1) is approx-
imately constant near the center, the second partial
derivatives in both R and z taken at the center will be
finite, the first ones for reasons of symmetry will be
zero, so that potential (1) near the center can be ap-
proximated by a polynomial containing the squares
in R and z only. In other words, its approximation
in the central parts is a potential function separating
the variables, known to admit splitting of energy in-
tegral. The obtained orbits confirm this because the
boundaries in z are two symmetric planes and those
in R two coaxial cylinders. We can say that this is
quite a simple case.

4. CONCLUSION

In the present paper a number of orbits of a
test particle moving in a force field characterized by a
steady state and axial symmetry is integrated. The
particular potential chosen for this purpose is that
of Miyamoto and Nagai (formula (1)). This poten-
tial is more realistic than those used by other au-
thors (e.g. Hénon and Heiles 1964, Richstone 1980)
and offers a satisfactory approximation in describing
the mass distribution within subsystems of galaxies
(e.g. Ninkovié¢ 1992). Among its parameters the to-
tal mass is kept constant, whereas the other two,
having distance dimension, are varied but provided
that their sum is constant. The variation of the
parameter values does not lead to essential differ-
ences. On the other hand, some special cases, such
as epicyclic orbits, nearly planar orbits and orbits
in the central parts, are confirmed as relatively sim-
ple ones. They are all characterized by some kind of
splitting of the energy integral in two parts referring
to the motions in R and z, respectively. Our con-
firmation concerns the dependence on time of the
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coordinates where we find rather simple periodical
functions. However, the situation with the so-called
real spatial orbits is different. Though they are de-
scribed with three independent orbital elements, the
question concerning the third integral and its rela-
tion to the energy integral remains unclear which is
confirmed by the very complicated time dependences
of the coordinates. Also, the same initial position,
the same energy and angular momentum yield dif-
ferent orbits depending on the initial fraction in the
effective kinetic energy (3(R? + £2)) of either of its
components. Without regard to this circumstance,
the present authors are inclined to propose to char-
acterize an orbit, in addition to its specific angular
momentum (component along z), by the mean val-

ues of R? and 22, over time as a possible replacement
of its energy and possibly another integral. In this
way the present authors try to explain why, for ex-
ample, in the solar neighborhood the mean value of
the square in the z random-velocity component is
different from that in R, no matter what sample of
local stars is examined.
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Opuzunasty HayyHy pao

IIpemmer mpoyuaBama je jeman KOHKpETAH
CJIy4aj CTAIMOHAPHOT CTalma U OOPTHE CUMeTpHrje
- ¢opMyia 3a MOTEHNUja] KOjy CY IPeJIOKUIN
Mujamoro n Haraun. W3pauysar je Hu3 opbura
Be3aHe MPOOHe MaTepujajJHe TauKe IIPU deMy ce
MeBajy U IapaMeTpy IOTeHNUjajla U IIOYEeTHU
YCIIOBU. 3a Pa3iMKy OJ HEKMX IOCEOHUX Clryda-
JeBa, KA0 IITO Cy CKOPO KPYKHE U CKOPO PABAHCKE
opbute, y ciay4dajy ’dUmuCTO IPOCTOPHUX’ OopoOuTta

3aBUCHOCT KOODAMHATA OJ BpEMEHa je BeoMa
CIIOJKEHA Ta je MarTeMaTwuyka obpama y3 momoh
nepumoauuHnx (yumumja jensa moryha. Mwmajyhnm
y BuUOy na cy opbure mpoydaBaHe y OBOM Dany
onpebene ca Tpu esmeMmeHTa, ayTOpU NpPEmIAKY
[a BPENHOCTH KBaJpaTa KOMIIOHEHAaTa Op3uHA
yCpeImeHe MO0 BPEMEHY CIIy:Ke Kao KapaKTePUC-
TUKE OBUX OpOuTa.
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