
Trail saving in SMT

Milan Banković1 and David Šćepanović2

1 Faculty of Mathematics, University of Belgrade, Serbia
milan@matf.bg.ac.rs

2 Faculty of Mathematics, University of Belgrade, Serbia
davidscepanovic96@gmail.com

Abstract

In this paper we discuss and evaluate the method of trail saving on backjumps in
CDCL(T)-based SMT solvers. The method was originally proposed for CDCL-based SAT
solvers at the SAT conference in 2020, showing a positive impact on solving SAT instances.
Since a SAT solver tends to follow a similar path down the search tree after a backjump,
saving the retracted portion of the trail enables speeding up the inference after the back-
jump by copying the saved inferred literals to the assertion trail, instead of re-propagating
them by the unit-propagation mechanism. A similar behaviour may be expected when SMT
solvers are concerned, but since the process of theory propagation within SMT solvers is
usually even more expensive, the trail saving technique may potentially have even more
significant impact in case of SMT instances. Although the experimental evaluation given in
this paper shows some potential of the approach, the obtained results are generally mixed,
and depend greatly on the chosen benchmark family, even within the same theory. Further
analysis might be needed in order to better understand the behaviour of the method and
its effects on the entire solving process.

1 Introduction

SAT and SMT solvers have become indispensable tools in the previous two decades, with
applications spanning from hardware and software verification [4, 8, 17, 12], to proving mathe-
matical theorems [9, 15] and solving different kinds of constraint satisfaction problems [5, 16].
SAT solvers decide on the satisfiability of a given propositional formula, typically in conjunc-
tive normal form (CNF). Although quite simple, propositional language is powerful enough to
enable a great number of problems from different areas to be expressed as problems of propo-
sitional satisfiability (or validity) and then solved by a SAT solver. This approach has showed
tremendous success in the previous years, thanks to very efficient SAT solvers based on the
conflict-driven-clause-learning (CDCL) algorithm [10]. On the other hand, SMT solvers de-
cides on the satisfiability of a first-order formula, modulo some given theory of interest. Typical
theories used in practical SMT solving are motivated by the main line of application of SMT
solvers in the field of software verification, and include equality with uninterpreted functions
(EUF), linear real and integer arithmetic, theory of arrays, theory of bitvectors, theory of in-
ductive datatypes, and so on. Most modern SMT solvers uses a CDCL SAT solver for dealing
with the propositional structure of a given first-order formula, while the theory reasoning is the
responsibility of some dedicated theory-specific procedure [3].

New applications pose new challenges to SAT and SMT solvers, and there is a constant
pressure to make SAT and SMT technology even more efficient and robust. Therefore, new
implementational and algorithmic enhancements of the existing procedures used in SAT and
SMT solvers have become a very popular research direction. One such improvement in the area
of SAT solving was presented by Hickey and Bacchus [7] at the SAT conference in 2020. Their
work considers saving the retracted portion of the assertion trail on each backjump (that is, non-
chronological backtrack). Since SAT solvers tend to follow a similar path while redescending the

Trail saving in SMT Banković and Šćepanović

search tree after a backjump, the saved literals may be used to speed up that redescent, since
they can be simply copied to the trail, instead of being re-propagated by the mechanism of unit-
propagation [10] . This is especially significant in the context of non-chronological backtracking,
because the retracted portions of the trail tend to be very large, and the solver must reproduce
a large number of literals at a similar cost as before the backjump. Hickey and Bacchus showed
that this approach had a positive impact on the overall performance of the SAT solvers that
were used in their experiments [7].

The main goal of this work is to evaluate the potential of using the described technique within
SMT solvers. The process of theory propagation [14], which is used as the inference mechanism
within SMT solvers, is usually much more time-consuming, compared to the unit propagation
of SAT solvers, because of more complex decision procedures (and the corresponding data
structures) used for the theory reasoning. Therefore, the trail saving method may be even
more efficient in the context of SMT solvers. On the other hand, implementing the trail saving
method within an SMT solver may pose additional challenges, since a non-trivial modifications
of the theory decision procedures might be needed in order to fully exploit the benefits of the
technique. In this paper, we aim to discuss all these issues and also to provide an experimental
evaluation that will give us some preliminary answers about the effectiveness of the proposed
trail saving method in the area of SMT solving. Up to the authors’ knowledge, such an analysis
was not published in the literature so far.

The rest of the paper is organized as follows. In Section 2 we present the basic concepts and
notions needed in the rest of the text. In Section 3 we describe the basic trail saving method, as
presented in [7]. Section 4 considers the usage of the trail saving method within SMT solvers,
and also discusses some challenges in that context. In Section 5 we discuss our implementation
and present the experimental results obtained by our implementation. Finally, in Section 6 we
give some conclusions and mention some further work directions.

2 Background

In this paper we assume the standard syntax and semantics of the first order logic with equality,
adopting the terminology from [3]. A first order formula F is satisfiable with respect to a
given theory T (or T-satisfiable) if there is a model of T in which F is true. The problem
of satisfiability of first order formulae with respect to a given theory is known as the SMT
problem. We assume that formulae are in conjunctive normal form (CNF), that is, a formula
is a conjunction of clauses, and each clause is a disjunction of literals (first order atoms or
their negations). We also assume that all considered formulae are ground, i.e. do not contain
variables.

We follow the usual approach for solving SMT problems, based on the CDCL(T)1 scheme
[14]. That is, we assume that the solver consists of a SAT solving core, implementing the
CDCL algorithm [10], and a dedicated procedure called a theory solver, which decides on T-
satisfiability of the found propositional model, expressed as a conjunction of ground first order
literals.

The notation used in the following text is mostly borrowed from [7]. The CDCL algorithm
incrementally builds a propositional model of the given formula F , by assigning truth values
to the literals of F . A partial propositional valuation v is represented by the (assertion) trail
M , which is a stack of literals that are true in v. The trail M is partitioned into decision levels
M [[i]], based on the number of decision literals that precede each literal on M (that is, M [[0]]

1In older literature, the name DPLL(T) was used for the same procedure instead.

2

Trail saving in SMT Banković and Šćepanović

is the sequence of literals on M before the first decision literal, M [[1]] is the sequence of literals
starting from the first decision literal up to (but not including) the second decision literal,
and so on). The topmost (current) decision level will be denoted by M [[Ldeep]]. Whenever a
decision is made, literals inferred from M and the clauses of F are pushed on M (the process
known as unit propagation). The clause responsible for the inference of a literal l is called
the (propagation) reason of l, and is denoted by reason(l). If a clause becomes falsified, the
process of conflict analysis uses the falsified clause (called the conflict reason) and the reasons
of propagated literals on M to determine the real cause of the conflict (expressed as a backjump
clause Cback) and backjumps to the appropriate level Lback, i.e. restores the trail to the state
M [[0]],M [[1]], . . . ,M [[Lback]] (denoted by M [[0 . . . Lback]] for short). The level Lback is the
minimal level such that Cback is a unit clause with respect to M [[0 . . . Lback]] (i.e. it would
trigger a unit propagation immediately after the backjump).

When a CDCL-based SAT solver is coupled with a theory solver for some first order theory
T, a conflict may also arise if the theory solver deduces that a subset R of literals from M is
T-unsatisfiable. Such a conflict is called a theory conflict (or T-conflict), and R is a T-conflict
reason which is used as a starting point for conflict analysis. The theory solver may also T-
infer literals (i.e. discover literals of F that are T-consequence of some subsets of literals from
M). These literals are pushed on M (the process known as theory propagation). If a literal l
is T-inferred from the set E ⊆ M , then E is called (T-propagation) reason of l. It is again
denoted by reason(l) and may be used during the conflict analysis in the future.

A formula is unsatisfiable if a conflict (propositional or T-conflict) happens when Ldeep = 0,
and is satisfiable if all literals of F have assigned values, none of the clauses are falsified and
there is no T-conflict detected by the theory solver.

3 Trail Saving Algorithm

In this section we discuss the basic trail saving algorithm [7], in the context of a CDCL-based
SAT solver. The algorithm maintains the list of saved literals retracted from the trail M ,
denoted by Msave (it is initially empty, by assumption). We denote the i-th literal in Msave

as Msave[i]. At each backjump, the portion M [[Lback + 1 . . . Ldeep − 1]] of the trail should
be saved to Msave, i.e. the retracted part of the trail without the conflicting level M [[Ldeep]]
(the conflicting level is not saved, since it would certainly produce the same conflict in the
future). Together with the literals, their reasons must also be saved. The saved reason of a
literal l will be denoted by reasonsave(l). In case of a saved decision literal l, we assume that
reasonsave(l) = reason(l) = ∅.

In order to preserve the correctness of the CDCL algorithm, the property of reason soundness
[7] of the saved trail Msave must be maintained during the operation of the solver. This property
guarantees that if the literals Msave[0], Msave[1],. . . ,Msave[i − 1] are true in M , and Msave[i]
is a saved inferred literal, then all the literals from reasonsave(Msave[i]) distinct from Msave[i]
itself are false in M . This means that it is safe to push Msave[i] to M as an inferred literal (if
it is undefined in M), or to report a conflict, if Msave[i] is false in M .

In the basic variant of the trail saving algorithm [7], the current content of the list Msave is
always replaced by M [[Lback + 1 . . . Ldeep − 1]]. An alternative, which is proposed as one of the
enhancements in [7], is to prepend M [[Lback + 1 . . . Ldeep − 1]] to the current state of Msave. In
this paper, we consider this enhancement as an intergral part of the algorithm.

The basic functions of the trail saving algorithm [7] are given in Algorithm 1, and are
discussed in the following paragraphs.

3

Trail saving in SMT Banković and Šćepanović

Algorithm 1 Trail saving algorithm
1: SaveTrail(Lback)
2: if Ldeep = Lold

back then
3: Msave ← ∅ . Case when concatenation may spoil reason-soundness

4: Lold
back ← Lback . Remember the backjump level

5: Msave ←M [[Lback + 1...Ldeep − 1]] + Msave . Conflicting Ldeep level is dropped
6: for all lsave ∈M [[Lback + 1...Ldeep − 1]] do . Saving reasons
7: reasonsave(lsave)← reason(lsave)

8: pivot← 0

9:
10: UseSavedTrail()
11: while pivot < |Msave| do . For each unprocessed literal lsave
12: lsave ←Msave[pivot]
13: if reasonsave(lsave) = ∅ then . Saved decision literal
14: if M |= lsave then
15: pivot← pivot + 1 . Passing saved literal that is true on M
16: else . Decisions are not inferred by M
17: return ∅
18: else . Saved inferred literal
19: if M |= lsave then
20: pivot← pivot + 1 . Passing saved literal that is true on M
21: else if M |= ¬lsave then . Conflict found on Msave

22: return reasonsave(lsave)
23: else . Push saved inferred literal to M
24: M ←M + lsave ; reason(lsave)← reasonsave(lsave)
25: pivot← pivot + 1

26: return ∅
27:
28: ConfirmPropagatedSavedLiterals()
29: while pivot > 0 do
30: pop front literal(Msave) . Confirming Msave changes
31: pivot← pivot− 1

32:
33: FilterSavedTrail()
34: Mnew ← ∅ . Filtered version of Msave

35: i← 0
36: while i < |Msave| do
37: lsave ←Msave[i]
38: if lsave /∈Mnew then . Non-duplicates are preserved in Msave

39: Mnew ←Mnew + lsave
40: if ¬lsave ∈Mnew then
41: break . Cut the portion of Msave after the first conflicting literal

42: i← i + 1

43: Msave ←Mnew

Saving the trail. The function SaveTrail is invoked by the solver immediately before a
backjump to the level Lback is performed. It first checks whether the prepending of the newly
saved portion of the trail to Msave may spoil the reason soundness of Msave. As we will discuss
later in more detail, this may happen only when a new conflict occurs immediately after a
backjump, while we are still at the level Lback. Therefore, in such cases we must clear Msave

before M [[Lback + 1 . . . Ldeep − 1]] is prepended, in order to stay on the safe side. For this
reason, we keep track of the decision level of the previous backjump as Lold

back, and reset the
saved trail if Ldeep = Lold

back. After that, M [[Lback + 1 . . . Ldeep− 1]] is prepended to Msave. The
function SaveTrail also saves the reasons of the saved literals. The variable pivot represents
the position of the next-to-process literal in the list Msave. This variable is reset at the end of

4

Trail saving in SMT Banković and Šćepanović

the function SaveTrail.

Example 1. Assume that we have, among others, the following set of clauses: {¬x16,¬x15,¬x5},
{x9,¬x2, x8}, {¬x13, x8, x10}, {x19, x3, x20}, {x11,¬x1, x10}, {x16,¬x6,¬x15}, {x14, x8, x15},
{¬x12,¬x2, x10}, {¬x17,¬x18}, {¬x8,¬x7}, {¬x20, x7}, {¬x22,¬x23}, {¬x22,¬x24},
{x22,¬x25}, {x23, x24,¬x1}, {¬x4,¬x19,¬x21}, {x19, x8,¬x9}, {¬x1, x22, x25}. Assume
that after the first several decisions the following state of the trail is reached:

M = xd
0 xd

1 xd
2 ¬x3 ¬xd

4 x5 x6 xd
7 ¬x8 x9 ¬xd

10 x11 ¬x12 ¬x13 ¬xd
14 x15 x16

Note that the literals labelled with d in the exponent are the decision literals, so the cur-
rent decision level is Ldeep = 7. At that moment, a conflict is encountered with the clause
{¬x16,¬x15,¬x5}. If the reason of ¬x16 is the clause {x16,¬x6,¬x15}, the conflict analysis
gives us the backjump clause {¬x15,¬x5,¬x6}, and the backjump level Lback = 4. Before the
backjump, the portion of the trail consisting of the levels 5 and 6 is saved, so after the backjump,
we have the following state:

M = xd
0 xd

1 xd
2 ¬x3 ¬xd

4 x5 x6 ¬x15

Msave = xd
7 ¬x8 x9 ¬xd

10 x11 ¬x12 ¬x13

The reasons of saved inferred literals are also saved. For instance, we have reasonsave(x9) =
{x9,¬x2, x8}, reasonsave(¬x8) = {¬x8,¬x7}, reasonsave(x11) = {x11,¬x1, x10}, and finally,
reasonsave(¬x13) = {¬x13, x8, x10} (we will need these saved reasons in the later examples).

Using the saved literals. The function UseSavedTrail uses the literals from the list
Msave to speed up the inference. In the original algorithm [7], this procedure is invoked within
the main propagation loop, before processing of each of the watch lists [11]. The function
UseSavedTrail returns the conflict reason, if one is discovered during the processing of the
saved trail, or ∅ if no conflict occurs. Note that saved decision literals may be passed during
the processing of Msave only if they are already true in M – otherwise the processing of Msave

is stopped and may be continued later, if the decision literal in question becomes true in M
by some other mechanism (decision or propagation). On the other hand, saved inferred literal
lsave are either passed (if lsave is already true in M), or pushed on M (if lsave is undefined in
M), or the conflict is reported (if lsave is false in M). In the second two cases, reasonsave(lsave)
is used as a propagation (or conflict) explanation.

Example 2. Continuing the previous example, assume that after the next two decides, the
following state is reached:

M = xd
0 xd

1 xd
2 ¬x3 ¬xd

4 x5 x6 ¬x15 xd
17 ¬x18 ¬xd

19 x20 x7 ¬x∗
8 x∗

9

Msave = xd
7 ¬x8 x9 ¬xd

10 x11 ¬x12 ¬x13

Note that the literal x7 is now inferred (from the clause {¬x20, x7}), and the literals ¬x8 and
x9 are copied from Msave, once x7 became true in M (we mark such literals with ∗ in the
exponent). The next literal ¬x10 cannot be copied from Msave, since it is a saved decision
literal undefined in M , so it is not a consequence of M at this moment. Note also that Msave

is not changed by the function UseSavedTrail, i.e. the literals x7,¬x8, x9 are still on Msave.

Confirmation of the propagated saved literals. The function ConfirmPropagated-
SavedLiterals is invoked before each decision. Namely, as we have seen in the previous
example, the literals from Msave that are pushed to M must remain on Msave until the prop-
agation process at that level is exhausted, in order to maintain the reason-soundness of Msave

5

Trail saving in SMT Banković and Šćepanović

(otherwise, in case of a conflict, the SaveTrail function would drop the conflicting topmost
level, possibly spoiling the reason-soundness of the remaining literals in Msave). When we are
assured that there is no conflict at the topmost level, we may safely drop the processed prefix
of Msave, just before the new decision is made.

Example 3. Continuing the previous example, recall that the literals x7, ¬x8 and x9 are still on
Msave, since their transfer to M is not confirmed yet. In the present state of the trail we again
have a conflict, this time with the clause {x19, x8,¬x9}. During the conflict analysis, we first
resolve the literals x9 and ¬x8 (using their saved reasons {x9,¬x2, x8} and {¬x8,¬x7}), reaching
the clause {x19,¬x2,¬x7}, and then resolve the literal x7 using its reason {x7,¬x20} (the
resolvent being the clause {x19,¬x2,¬x20}), and the literal x20 using its reason {x19, x3, x20},
finally obtaining the backjump clause {x19,¬x2, x3}. The backjump level is now Lback = 3, and
the new state is:

M = xd
0 xd

1 xd
2 ¬x3 x19

Msave = ¬xd
4 x5 x6 ¬x15 xd

17 ¬x18 xd
7 ¬x8 x9 ¬xd

10 x11 ¬x12 ¬x13

Note that the levels 4 and 5 from the trail M were prepended to Msave before the backjump.
Note also why it is important to keep the used literals on Msave until their transfer to M is
confirmed: since the conflicting level is never saved, if the literal ¬x8 was not kept on Msave

when it was copied to M , it would be lost after the backjump, and the literal ¬x13 would stay
on Msave with an unsound saved reason {¬x13, x8, x10}. Now assume that after the next two
decides we have the following state:

M = xd
0 xd

1 xd
2 ¬x3 x19 xd

21 ¬x4 x∗
5 x∗

6 ¬x∗
15 xd

22 ¬x23 ¬x24

Msave = xd
17 ¬x18 xd

7 ¬x8 x9 ¬xd
10 x11 ¬x12 ¬x13

Namely, after the decision x21, the literal ¬x4 was inferred from the clause {¬x4,¬x19,¬x21},
which once again unblocked the saved trail and the literals x5, x6 and ¬x15 were copied from
Msave to M . Just before the next decision x22, the copied literals from Msave were confirmed
on M , i.e. they were removed from Msave. Note that this is a safe operation – since these literals
are now on the trail M , but not at its topmost level, they will either be saved to Msave or stay
on M after the next backjump, preserving the reason soundness of the literals on Msave. The
obtained state of M is again conflicting, and this time the conflicting clause is {x23, x24,¬x1}.
After explaining ¬x24 with the clause {¬x22,¬x24}, and ¬x23 with the clause {¬x22,¬x23}, we
obtain the backjump clause {¬x1,¬x22}. The backjump level is now Lback = 2, and we reach
the following state:

M = xd
0 xd

1 ¬x22

Msave = xd
2 ¬x3 x19 xd

21 ¬x4 x5 x6 ¬x15 xd
17 ¬x18 xd

7 ¬x8 x9 ¬xd
10 x11 ¬x12 ¬x13

Note that the literals ¬x4, x5, x6,¬x15 that were confirmed on M are now again on Msave.

Filtering the saved trail. Note that concatenation of saved portions of the trail may result
in duplicates in Msave. As a consequence, the list Msave may grow indefinitely. Moreover, con-
flicting literals l and ¬l may appear on Msave, so the portion of Msave after the two conflicting
literals may be unreachable and, therefore, useless. For this reason, we should periodically filter
the list Msave, by removing the duplicates and all the literals after the first conflicting literal in
Msave. This is done by the function FilterSavedTrail. Note that the first conflicting literal

6

Trail saving in SMT Banković and Šćepanović

¬lsave is kept on Msave, since it may help in discovering a conflict. The procedure Filter-
SavedTrail is invoked whenever the length of Msave becomes greater than the total number
of atoms of the formula F .

Preserving the reason soundness. It can be argued that the CDCL algorithm enhanced
with the trail saving mechanism remains correct, provided that the reason soundness of Msave is
maintained during the operation of the solver. For the proof of this fact, we refer the interested
reader to the original work of Hickey and Bacchus [7]. Here we only discuss the unique case
when the concatenation of the saved trails may spoil the reason soundness, which is the case
when a new conflict happens immediately after a backjump, while we are still at the level Lback.2

This may happen because Ldeep = Lback in such a case, so the level M [[Ldeep]] = M [[Lback]]
was not saved on the previous backjump (since then it was the backjump level), and it will
not be saved on the next backjump (since now it is the conflicting level). This can make saved
reasons of some of the literals in Msave invalid after the next backjump.3 The next (and final)
example illustrates this phenomenon.

Example 4. In the state from the previous example, the clause {¬x1, x22, x25} triggers the unit
propagation of the literal x25, which makes the trail M in conflict with the clause {x22,¬x25}.
We first resolve the literal x25 with its reason, and obtain the clause {x22,¬x1}, and then
resolve the literal ¬x22 with its reason {¬x1,¬x22}, and obtain the backjump clause {¬x1}.
The backjump level Lback = 0 this time, so after the backjump we reach the following state:

M = ¬x1

Msave = xd
0

Note that the previous state of Msave was cleared before the new portion of M (the literal x0)
was prepended to it. This is because the conflict happened immediately after the backjump,
before the next decide. In such a situation, the literals x1 and ¬x22 from the conflicting level
were neither saved, nor they were kept on M , which might compromise the reason soundness
of some literals on Msave. For instance, recall that the saved reason of the literal x11 was
{x11,¬x1, x10}, and this reason is no longer sound, so the concatenation of the saved portions
of the trail is not possible.

4 Employing trail saving in SMT

The described trail saving technique may be naturally extended to be used in the context of
CDCL(T)-based SMT solvers, since such solvers are driven by a CDCL SAT solving engine. In
this section, the CDCL(T) algorithm with the trail saving enabled is presented and discussed
in detail. The overall structure of the CDCL(T) algorithm is not changed – the only thing that
should be done to enable the trail saving is to invoke the trail saving functions described in the
previous section at the appropriate places (which are mostly the same places as in the CDCL
algorithm).

2This issue was not discussed by Hickey and Bacchus [7], but they did implement the appropriate check for
such a condition in their solver, which means that they were aware of it.

3Note that there are cases when a conflict happens at Lback, but the reason-soundness still holds after
the contatenation of the saved trails. This means that the resetting of the saved trail each time a conflict is
encountered at Lback may be a quite conservative strategy. In our implementation, we try to recognize (some
of) such cases in order to avoid unnecessary resets of Msave.

7

Trail saving in SMT Banković and Šćepanović

Algorithm 2 CDCL(T) algorithm with the trail saving enabled: Solve function

1: Solve(F)
2: while true do
3: while M is changed do . Unit and theory propagation loop
4: C ← UnitPropagate() . Returns a conflicting clause, or ∅
5: if C 6= ∅ then . If a conflict is found, exit the propagation loop
6: break
7: C ← TheoryPropagate() . Returns a theory conflict reason, or ∅
8: if C 6= ∅ then . If a conflict is found, exit the propagation loop
9: break

10: if C 6= ∅ then . A conflict is discovered during the propagation
11: if Ldeep = 0 then . A conflict at the level 0
12: return UNSAT
13: (Lback, Cback)← AnalyzeConflict(C,M) . Cback is the backjump clause
14: SaveTrail(Lback) . Save the retracted portion of the trail
15: M ←M [[0...Lback]] . Backjump the trail to the level Lback

16: RestoreTheorySolverState(Lback) . Notify the theory solver
17: Ldeep ← Lback

18: if |Msave| is greater than the total number of atoms in F then
19: FilterSavedTrail() . Filter Msave if needed

20: F ← F ∪ {Cback} . Learning the backjump clause triggers unit propagation
21: else
22: if all atoms from F are assigned in M then
23: return SAT
24: ConfirmPropagatedSavedLiterals() . Confirm the changes of Msave

25: ld ← PickBranchingVariable(M,F)
26: M ←M + {ld}; reason(ld)← ∅ . Make a new decision
27: Ldeep ← Ldeep + 1

The main loop of the CDCL(T) algorithm. The main loop of the algorithm is imple-
mented in the function Solve (Algorithm 2). It first invokes UnitPropagate and Theo-
ryPropagate procedures to do the inference. These procedures check for unit/theory propa-
gations and conflicts, and will be discussed later in more detail. If a conflict is encountered, a
conflict reason C is returned. In that case, the procedure Solve starts the conflict analysis, by
invoking the AnalyzeConflict4 function which returns the backjump clause Cback and the
backjump level Lback. Before backjumping to the level Lback, the procedure first saves the part
of the trail that will be retracted (by calling the function SaveTrail). Then it performs the
backjump by restoring the trail to M [[0..Lback]]. It also tells the theory solver to restore its
state to the level Lback, and performs the saved trail filtering if needed (by invoking the function
FilterSavedTrail). Finally, the backjump clause is learnt, triggering the next propagation
cycle. On the other hand, if no conflict is encountered during the propagation, and there are
still atoms from the formula F that are unassigned in M , we first confirm the changes of the
saved trail by invoking the function ConfirmPropagatedSavedLiterals. Then we pick a
literal for the next decide and push it to M as a decision literal.

4The pseudo-code of the function AnalyzeConflict is omitted (as well as of several other functions), in
order to save space, since it does not invoke any of the trail saving functions.

8

Trail saving in SMT Banković and Šćepanović

Propagation functions and using the saved trail. The functions UnitPropagate and
TheoryPropagate which are responsible for the propagation are given in Algorithm 3.

Algorithm 3 CDCL(T) algorithm with the trail saving enabled: propagation functions

1: UnitPropagate()
2: while there are unprocessed literals on M do
3: C ← UseSavedTrail() . First, try to use the saved trail
4: if C 6= ∅ then . If a conflict is found, return the conflicting clause C
5: return C
6: l is next-to-process literal from M
7: for all C ∈ watchlist(¬l) do . process the watchlist of the falsified literal ¬l
8: lalt ← FindAlternativeWatch(C, ¬l)
9: if lalt 6= ∅ then . A new watch found

10: lalt replaces ¬l as a watch literal of C
11: move C from watchlist(¬l) to watchlist(lalt)
12: else . All literals of C are false, except, possibly, the other watch l′

13: if the other watch l′ of C is false in M then
14: return C . C is a conflicting clause
15: else if the other watch l′ of C is undefined in M then
16: M ←M + {l′} . Unit propagation
17: reason(l′) = C . C is the propagation reason

18: return ∅
19:
20: TheoryPropagate()
21: while there are unprocessed literals on M do
22: C ← UseSavedTrail() . First, try to use the saved trail
23: if C 6= ∅ then . If a conflict is found, return the conflicting clause C
24: return C
25: l1, . . . , ln is n next-to-process literals from M . n is theory-dependant
26: (C,Minf)← DoTheTheoryInference(l1, . . . , ln)
27: if C 6= ∅ then . If a theory conflict is found, return the theory conflict reason C
28: return C
29: for all l in Minf do . Otherwise, push the inferred literals Minf to M
30: M ←M + {l}
31: reason(l)← lazy . The reason will be generated lazily, if needed

32: return ∅

The function UnitPropagate implements the well-known two-watched-literals algorithm
for unit propagation [11]. It processes the literals from M one by one in a loop. In each
iteration of the loop, it first tries to use the literals from Msave if possible, by invoking the
function UseSavedTrail. If no conflict is found, then the next unprocessed literal l is read
from M and the watch list of its opposite literal ¬l (which is false in M) is processed in the usual
fashion. Note that for each propagated literal l, its reason (which is a clause of the formula F)
is set.

We assume that the function TheoryPropagate has a similar global structure, although
its precise structure may depend on a concrete theory-specific procedure. It also processes the
literals from M in a loop, but not necessarily one by one (depending on a concrete procedure,
it might process all unprocessed literals at once). The function UseSavedTrail is invoked
once per the loop iteration, before the processing of the literals. The theory-specific inference
is captured by the function DoTheTheoryInference, which, by assumption, returns either
a theory conflict reason C, or the set of literals Minf that are T-inferred from the prefix of M
up to the literal l, in case when no theory conflict is encountered. In the latter case, the literals
from Minf are pushed to M . On the other hand, their reasons are not set, since the reasons
of T-inferred literals are usually generated lazily, i.e. only when needed, during the conflict

9

Trail saving in SMT Banković and Šćepanović

analysis. Thus, we set reason(l) to a special value lazy, which serves as a placeholder for the
true reason which may be calculated later by the theory solver, if needed.

An issue that deserves a discussion here concerns the exact location and the frequency of
invocation of the function UseSavedTrail within the propagation functions. In case of the
unit-propagation, we exactly followed the approach from the original trail saving algorithm,
presented by Hickey and Bacchus [7]. Moreover, we extended the same approach to the case of
the theory propagation. That is, in both cases, the function UseSavedTrail is invoked once
per iteration of the propagation loop, before the literals from M are processed.

The question remains whether this approach is the best approach. The rationale behind the
approach is that the saved trail should be consulted whenever there are new literals on M , since
some of them may unblock the next portion of Msave (recall that the consumption of Msave

is stopped when a saved decision literal l that is undefined in M is encountered). Although
we cannot guarantee that each iteration of the loop will indeed produce new literals on M ,
it will be the case very often in practice. On the other hand, too frequent invocation of the
function UseSavedTrail should not be an issue, since its unfruitful calls are not expensive
(the function will return immediately if the next literal on Msave is a saved decision literal
undefined in M). For this reason, we decided to stick to that approach. Further analysis of
this issue is left for the future work.

Saving the theory propagation reasons. Another issue concerns saving of explanations
of T-inferred literals. Recall that the function SaveTrail must save the propagation reasons
of the inferred literals, together with the literals themselves. In case of unit-propagated literals,
this is easy, since their reasons are the clauses of the formula F (or some of the learned clauses),
and they are immediately available (recall that they are set in the function UnitPropagate
immediately after the propagation). On the other side, the reasons of the T-inferred literals may
not be known yet at the moment when the function SaveTrail is invoked, since we already
said that the theory solvers usually produce reasons of propagations lazily, i.e. only when a
reason is required during the conflict analysis (recall that the function TheoryPropagate
uses the special value lazy to indicate that the reason will be calculated later, on demand).
This problem can be resolved in two ways:

� The theory solver may be asked to produce the reasons of all saved T-inferred literals
eagerly, when the trail is saved during the execution of the SaveTrail function. The
produced reasons are then saved in the same way as the reasons of the unit-propagated
literals. This approach is very easy to implement, since it does not require any modifica-
tion of the theory solver. On the other hand, producing all the reasons eagerly may be
too expensive, since only a portion of them will be actually needed during the conflict
analysis.

� Instead of saving the reason of a T-inferred literal l, we may only save the information
that the theory solver is responsible for producing the reason of l later.5 The reason will
be produced lazily, when it is needed during the conflict analysis. In other words, the idea
is to follow the usual approach used in SMT. The main problem with this approach is that
the theory solver may not be able to produce the reason of the literal that is, technically,
not pushed to M as a T-inferred literal during the last propagation cycle, but it is copied
from Msave as a saved T-inferred literal from some previous propagation cycle. This
means that the internal state of the theory solver has been changed meanwhile, possibly

5In case of multiple theory solvers, when the combination of theories is considered, this information should
contain a reference to the theory solver responsible for producing the reason of l in the future.

10

Trail saving in SMT Banković and Šćepanović

multiple times over consecutive backjumps. This also holds for the data structures within
the theory solver that are used by the reason-generating procedures. Such data structures
may not contain information needed for explaining the literals that are not propagated to
M by the theory solver in that propagation cycle, even if those literals are indeed T-
consequences of the trail M . In order to resolve this issue, non-trivial modification of the
theory solver’s data structures may be needed, making this approach much more difficult
to implement.

In our work we follow the first approach, due to its simplicity. Examining the second
approach is left for the future work.

5 Implementation and Evaluation

For the purpose of evaluation, the trail saving method described in previous sections is imple-
mented within the SMT solver argosmt6, which is an open-source CDCL(T)-based SMT solver
implemented in the C++ programming language for research purposes. The solver includes two
theory solvers:

� The EUF theory solver based on the congruent closure procedure described in [13]. This
procedure maintains a data structure called the proof forest, which is used for generation
of propagation (and conflict) reasons. The state of this data structure is restored when
a backjump is performed, so it cannot be used for explaining the propagations from the
previous propagation cycles. Therefore, during the trail saving operation, this theory
solver must produce all the reasons of the saved literals eagerly, and this is what is done
in our implementation. Notice that the eager reason generation approach may induce
significant overhead in this case, since the generation of the propagation reasons within
the EUF theory solver may be time-consuming.

� The linear arithmetic theory solver based on the simplex procedure [6]. This theory
solver is optimized for real arithmetic, but it also includes some basic support for integer
constraints (based on the branch-and-bound method [6]). Note that this theory solver may
be used for solving the difference logic problems, too. Unlike the EUF theory solver, the
reasons for theory propagations produced by the simplex-based theory solver are much
cheaper to generate. Therefore, the expectations are that the overhead of the eager reason
generation approach will not be as significant in this case.

We evaluated the implementation on SMT-LIB [2] instances. All instances from all non-
incremental QF LRA, QF RDL and QF UF benchmark families were included in the evaluation.7 The
experiments were run on a computer with four AMD Opteron 6168 1.6GHz 12-core processors
(that is, 48 cores in total), and with 94GB of RAM.

For comparison, each instance was evaluated with and without trail saving enabled (the
two versions of the solver are denoted by argosmt-ts and argosmt-nts, respectively). In
both cases, time limit per instance was 1200 seconds. After the results were obtained, several
benchmark families were excluded from the further analysis, either because they were too easy
for our solver (all instances were solved in less then a second on average by both argosmt-nts

6The solver is available at github: https://github.com/milanbankovic/argosmt. To experiment with the
trail saving, checkout the branch ts and then follow the instructions in the file README.md.

7Instances ara available at: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks

11

https://github.com/milanbankovic/argosmt
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks

Trail saving in SMT Banković and Šćepanović

and argosmt-ts) or too hard (no instance was solved in the given time limit by neither of the
solver’s variants).8 The final results are presented in Table 1.

Family Logic #
in

st
a
n
c
e
s

#
so

lv
e
d

(n
ts
)

a
v
g
.
ti
m

e
(n

ts
)

#
so

lv
e
d

(t
s)

a
v
g
.
ti
m

e
(t
s)

%
d
e
e
p

b
jm

p
s

#
sa

v
e
d

le
v
e
ls

#
sa

v
e
d

li
ts

%
sa

v
e
d

p
r
o
p
s

uart QF LRA 73 61 508 59 545 81.9 11 252 16.7
Heizmann QF LRA 58 9 2063 9 2055 89.5 10.7 52.4 18.1
tta startup QF LRA 72 64 321.3 62 376.4 76.5 11.4 430 12.3

miplib QF LRA 42 10 1861.5 10 1853.5 77.3 7.6 142.8 5.68
DTP-Sched QF LRA 91 89 62 89 62.3 99.3 34.3 148.8 8.8

clock synchro QF LRA 36 25 749.5 27 658.4 62.5 10.9 83 12
latendresse QF LRA 18 15 404.7 15 404.7 100 14.6 32.6 0.42
2019-ezsmt QF LRA 105 72 796.1 73 785.5 82.9 8.07 173.4 4.05

TM QF LRA 25 19 588.8 20 538.7 61 7.9 180.3 8.1
SV-COMP QF LRA 94 21 1959.7 27 1834.6 88.9 49.3 214.7 11.8
CoopT2 QF LRA 202 54 1879 48 1962.8 91 86.7 426 10.5

sc QF LRA 144 132 246.9 132 247.1 85 14 205.8 14
Ultimate QF LRA 123 42 1710.1 44 1713.7 92 366.7 818.1 8.5
Total QF LRA 1083 613 1113.6 615 1112.5 84.1 51.1 287.7 10.7

sal QF RDL 60 42 765.5 42 764.8 46.3 5.5 231.6 7.2
scheduling QF RDL 106 51 1306 56 1192 95.1 15.8 56.7 19.8

skdmxa QF RDL 36 17 1462 16 1513 61.7 69.4 2472 12.3
temporal QF RDL 51 49 167.2 49 159.9 95.8 87 235.8 10.3
Total QF RDL 253 159 970.6 163 928.5 80.1 40.5 395.7 13

eq diamond QF UF 100 22 1887 21 1907 17 1.2 2.5 0.9
hwbench QF UF 773 769 17.1 766 33.4 39.7 14.6 286.4 5.5
QG-class QF UF 6396 6334 34.7 6321 43.7 49.4 4.7 331.2 20.7
SEQ QF UF 56 48 411.5 41 707.9 59.2 18.6 56.4 20.5
NEQ QF UF 48 34 818.9 26 1249 51.2 58 120.6 11.7
PEQ QF UF 47 27 1162 21 1423 44.7 4 13.5 14.4
Total QF UF 7420 7234 72.9 7196 89.3 48.6 5.6 323.8 19

Table 1: The results of the evaluation of the trail saving method on the selected SMT-LIB
benchmark families. The left side of the table shows the numbers of solved instances and
average solving times for argosmt-nts and argosmt-ts. Times are given in seconds. Time
limit per instance was 20 minutes. For unsolved instances, twice the timeout was used when
the average solving time was calculated. The winners are printed in boldface. The right side
of the table shows some trail saving statistics, on average per instance (percent of backjumps
by more than one level, average numbers of saved levels and saved literals per SaveTrail call,
percents of propagations originating from the saved trail).

The results show that the trail saving technique has a positive effect in case of some QF LRA

benchmark families, but there are also QF LRA benchmark families for which the trail saving
algorithm does not improve the solver’s performance (either it does not have any effect, or
even induces some degradation of performance). On average, there is no significant difference
between argosmt-nts and argosmt-ts on QF LRA instances. On the other hand, the results

8Too easy: keymaera, meti-tarski, sal, spider benchmarks (QF LRA), CLEARSY, Rodin (QF UF). Too
hard: tropical-matrix (QF LRA).

12

Trail saving in SMT Banković and Šćepanović

are positive in general for QF RDL instances, where argosmt-ts performs better on three of four
benchmark families. Finally, the trail saving technique exhibits a bad performance on QF UF

instances on all benchmark families. These claims are also supported by the plots given in
Figure 1.

Figure 1: Per instance scatter plots (left) and survival plots (right) for: QF LRA (top), QF RDL

(middle) and QF UF (bottom). Times are given in seconds.

13

Trail saving in SMT Banković and Šćepanović

The consistently bad performance on QF UF instances is somewhat expected, and may be
explained by the expensiveness of the eager reason generation in case of the EUF theory solver.
Moreover, the EUF solver is not expected to benefit much from the saved literals, since it must
process all these literals again and perform merging of the corresponding congruence classes
anyway [13].

On the other hand, prior to the experiments it was expected that the simplex-based arith-
metic solver would benefit from the trail saving. Indeed, not only the eager reason generation
is cheap, but we can also expect that copying the saved literals from Msave instead of prop-
agating them again by the theory solver might help in avoiding some very expensive pivoting
steps within the simplex procedure [6]. However, such a hypothesis is not supported by our ex-
perimental results, since the method does not introduce any consistent improvement on QF LRA

benchmarks. Another hypothesis was that the obtained performance improvement should be
proportional to the degree of utilization of the saved trail. In order to test this hypothesis,
we calculated some statistics concerning the trail saving (also presented in Table 1), such as
how often the trail was saved on backjumps (that is, the percent of backjumps for more than
one level), and how many levels and literals were saved on average per backjump. Also, the
last column in Table 1 shows the average percent of propagations that actually came from the
saved trail, which is probably the most accurate measure of the saved trail’s utilization during
the operation of the solver. Suprisingly, we did not find any correlation between any of these
features and the performance of the trail saving algorithm, neither at the per-family level nor
at the per-instance level.

In addition to the main experimental evaluation presented in this section, we have also
evaluated our solver on all QF UFLRA benchmark categories, in order to see how the trail saving
method performs when the combination of the two theories is considered. These results are not
presented here, since there were not almost any difference in behaviour between argosmt-nts

and argosmt-ts on QF UFLRA instances.
We also did some preliminary evaluation on QF LIA instances, but taken only from several

randomly selected benchmark families, which was not sufficient to draw some general conclu-
sions. However, the obtained results suggest the similar behaviour as on QF LRA instances (that
is, the behaviour greatly depends on the benchmark family9).

Finally, let us mention that Hickey and Bacchus in their original work [7] also experimented
with two additional enhancements of the basic trail saving method (one of them considers
the quality of saved reasons and the other considers using the saved decisions as lookaheads
for conflicts). We have implemented and evaluated the same enhancements in our solver, but
contrary to the results of Hickey and Bacchus, our evaluation on the selected SMT-LIB instances
did not show any significant impact of these enhancements.

6 Conclusions and Further Work

In this paper, we have discussed the potential of using the method of trail saving within SMT
solvers. For the purpose of evaluation, we have implemented the trail saving method within a
CDCL(T)-based SMT solver argosmt, equipped with two theory solvers which are among the
most commonly implemented within modern SMT solvers – the congruence closure EUF theory
solver, and simplex-based linear arithmetic theory solver. Our experimental results show that
the trail saving exhibits a consistently bad performance on EUF instances, which is probably
caused by the expensiveness of the eager reason generation strategy. On the other hand, the

9For example, trail saving performed well on the convert, rings and tropical matrix benchmark families, but
not on the slacks, mathsat and wisa families.

14

Trail saving in SMT Banković and Šćepanović

effectiveness of the trail saving on linear arithmetic instances greatly depends on the chosen
benchmark family, and further investigation is needed in order to discover the exact traits of
the benchmarks that determine the behaviour of the trail saving. Our first assumption that
the efficiency gains should be proportional to the degree of the utilization of the saved trail was
not supported by the obtained experimental results. This means that the main effect of the
trail saving may not be in speeding up the propagation, which was our starting assumption.
The main effect is probably the influence on the search, since the saved reasons influence
the conflict analysis and the learned backjump clauses. The main line of the further work
is, therefore, to perform a more detailed analysis of these effects. Another further research
direction is to evaluate the method on other important theories used in SMT (such as theory
of arrays, bitvectors and so on). Finally, since the implementation details may significantly
influence the obtained experimental results, it might be needed to implement the technique
within some state-of-the-art SMT solver, in order to more reliably evaluate the potential of the
trail saving method in SMT solving.

References

[1] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers. In
Twenty-first international joint conference on artificial intelligence. Citeseer, 2009.

[2] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.6. Tech-
nical report, Department of Computer Science, The University of Iowa, 2017. Available at
www.SMT-LIB.org.

[3] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability Modulo
Theories. In Handbook of Satisfiability, chapter 26, pages 825–885. IOS Press, 2009.

[4] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and Yunshan Zhu. Bounded
model checking. In Handbook of satisfiability, volume 185, pages 457–481. IOS Press, 2009.

[5] Miquel Bofill, Miquel Palah́ı, Josep Suy, and Mateu Villaret. Solving constraint satisfaction prob-
lems with SAT modulo theories. Constraints, 17(3):273–303, 2012.

[6] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for DPLL(T). In Inter-
national Conference on Computer Aided Verification, pages 81–94. Springer, 2006.

[7] Randy Hickey and Fahiem Bacchus. Trail saving on backtrack. In International Conference on
Theory and Applications of Satisfiability Testing, pages 46–61. Springer, 2020.

[8] Daniel Kroening. Software verification. In Handbook of Satisfiability, pages 505–532. IOS Press,
2009.

[9] Filip Marić. Fast formal proof of the Erdős–Szekeres conjecture for convex polygons with at most
6 points. Journal of Automated Reasoning, 62(3):301–329, 2019.

[10] Joao Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-Driven Clause Learning SAT Solvers.
In Handbook of Satisfiability, chapter 4, pages 131–155. IOS Press, 2009.

[11] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an Efficient SAT Solver. In Annual ACM IEEE Design Automation Conference, pages
530–535. ACM, 2001.

[12] Rajdeep Mukherjee, Daniel Kroening, and Tom Melham. Hardware verification using software
analyzers. In 2015 IEEE Computer Society Annual Symposium on VLSI, pages 7–12. IEEE, 2015.

[13] Robert Nieuwenhuis and Albert Oliveras. Fast congruence closure and extensions. Information
and Computation, 205(4):557–580, 2007.

[14] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the
ACM (JACM), 53(6):937–977, 2006.

15

Trail saving in SMT Banković and Šćepanović

[15] Manfred Scheucher. Two disjoint 5-holes in point sets. Computational Geometry, 91:101670, 2020.

[16] Naoyuki Tamura and Mutsunori Banbara. Sugar: A CSP to SAT translator based on order
encoding. Proceedings of the Second International CSP Solver Competition, pages 65–69, 2008.

[17] Milena Vujošević-Janičić and Viktor Kuncak. Development and evaluation of LAV: an SMT-
based error finding platform. In International Conference on Verified Software: Tools, Theories,
Experiments, pages 98–113. Springer, 2012.

16

	Introduction
	Background
	Trail Saving Algorithm
	Employing trail saving in SMT
	Implementation and Evaluation
	Conclusions and Further Work

